

SUBJECT: ENGINEERING: OCR- ENGINEERING DESIGN LEVEL 1 / LEVEL 2 - J822

Year 9

What are the aims and intentions of this curriculum?

Cambridge National Engineering Design is practical, accessible, fun to teach and exciting to learn, it inspire students to develop real-world skills to prepare them for their future. Additionally, the course develops students so they are able to identify market opportunities and solve problems, which contribute to the development of new products and systems. This qualification is aimed at learners who wish to study the processes involved in designing new engineered products and the requirements of a design specification. Through research and practical activities, learners will understand how market requirements and opportunities inform client briefs.

They will also learn how to communicate ideas using a variety of engineering conventions that include freehand sketching, formal drawing techniques, which include Computer Aided Design and Computer Aided Manufacturing. The Cambridge Nationals in Engineering Design encourages learners to communicate and consult with a client to develop a viable and innovative product. Learners will apply practical skills to produce a prototype in the form of a model and test design ideas to inform further product development. Through reflection, learners evaluate the prototype, making a comparable outcome against specification points, and assess possible, practical solutions and improvements to their prototype design. This course prepares students to continue their studies at surrounding colleges at KS5 completing Level 3 qualifications or the opportunity to start apprenticeships in areas such as Engineering, Carpentry and plumbing.

Highlighted in green are links to PSHE in the curriculum Highlighted in blue are links to Careers in the curriculun

Term	Topics	Knowledge and key terms	Skills developed	Assessment
Autumn 1	Careers		Careers in Engineering	Completion and grading of
			Did you make the right choice?	assignment booklet and
	Accident and emergency	Understand safe and effective working		homework task.
	procedures and workplace roles	procedures in an engineering workplace.	Future opportunities	
	and responsibilities.			Participation in class
		Key words	By developing applied knowledge and practical	discussions.
	Objectives:	Safety – the condition of being safe from	skills, this course will help give students the	
		undergoing or causing hurt, injury, or loss.	opportunity to progress on to A Levels, a	Questioning and
	Define the terms safety and		Cambridge Technical in Engineering, an	answering.
	hazards.	Hazard – a source of danger.	apprenticeship or university.	
		Emergency- a serious, unexpected, and	The sky's the limit with Engineering Design –	Grading of presentation
	To develop the ability to recognize	often dangerous situation requiring	what about becoming an Aerospace Engineer?	using rubric.
	threats to personal safety in a	immediate action.		
	range of contexts and to consider		No matter what you progress on to –	Peer assessment using
	how these may be dealt with.	Accident- an unfortunate incident that	the skills you'll learn from a Cambridge	rubric.
		happens unexpectedly and unintentionally,	National will prepare you for the future.	
	Identify at least 4 types of hazards	typically resulting in damage or injury.		Grading of written
	that may be found in the			activities.
	workplace.			

Discuss the procedures to follow regarding workplace hazards and safety.

Understand what a risk assessment is and why they are used.

Review other peoples risk assessments.

Create our own risk assessments for specific practical task.

List at least eight types of emergencies that can occur in a workplace.

Explain what to do in at least four kinds of emergencies.

Identify important information employers should provide about how to respond to workplace emergencies.

Explain and evaluate the importance of an Emergency Action Plan (EAP)

Explain legal legislation and regulations regarding health and safety in the workplace.

Explain the importance of employees and employers adhering to correct legislation, policy and procedures in an engineering workplace.

Emergency Action Plan – must be in writing, kept at the workplace, and available for employees to review. The purpose of an EAP is to facilitate and organize what actions should take place among employees and employers during an emergency at work.

Personal safety- is "an individual's ability to go about their everyday life free from the threat or fear of psychological, emotional or physical harm from others."

A **risk assessment** is a systematic method of looking at work activities, considering what could go wrong, and deciding on suitable control measures.

Risk- a situation involving exposure to danger.

A safety sign- 'information or instruction about health and safety at work on a signboard, a colour, an illuminated sign or acoustic signal, a verbal communication or hand signal.

Safety measures-activities and precautions taken to improve safety.

Occupational and Safety Health Administration – "OSHA" provides information, trains workers/employers, and assists workers/employers on workplace health and safety conditions.

Occupational Safety and Health Act – passed in 1970 to govern workplace health and safety in the private sector.

Legislation- a law or set of laws suggested by a government and made official by a parliament.

Know how to identify and control hazards in the workplace.

Within the workplace: methods to identify hazards e.g. statements, analysis of significant risks, prediction of results or outcomes of those risks, use of accident data, careful consideration of work methods.

Working environment: consideration of the workplace and its potential for harm e.g. confined spaces, working over water or at heights, electrical hazards, chemicals, noise.

Hazards which become risks: identification of trivial or significant risk; potential to cause harm; choosing appropriate control measures; electrical safety e.g. identify and control hazards, cause of injury, effects of electricity on the body, circuit overloading; mechanical safety e.g. identify and control hazards, cause of injury, rotating equipment, sharp edges; safety devices e.g. fuses, guards, fail safe, sensors.

Identifying and explaining Legislation and Regulations: Able to explain the consequences of management not abiding by legislation and regulations and carrying out their roles and responsibilities in a given health and safety situation.

Be able to carry out a risk assessment and identify control measures.

Risk assessments: items/area to be assessed e.g. machine operation, work area; five steps (principal hazards, who is likely to be injured/harmed, evaluate the risks and decide on adequacy of precautions, recording findings, review assessment)

Completion and grading of project.

Design and make an original safety sign that will be suitable for an Engineering workshop.

Select and use appropriate tools, equipment and components in the marking out of their safety signs.

Students can construct their safety signs using given materials, tools and equipment.

Regulations- a rule or directive made and maintained by an authority.

Employee's Rights – laws, regulations, policies, and procedures in place to protect employees.

Use of control measures: e.g. remove need (design out), use of recognized procedures, substances control, guarding, lifting assessments and manual handling assessments, regular inspection, use of Personal Protective Equipment (PPE), training of personnel, other personal procedures for health, safety and welfare.

Understand the methods used when reporting and recording accidents and incidents.

Principles: why employers keep records of serious accidents, incidents and emergencies; responsibilities of competent persons; cost of accidents e.g. direct, indirect, human consequences; trends e.g. major causes, fatal and serious injury, methods of classification, statistics.

Recording and reporting procedures:

regulations on accident recording and reporting e.g. Reporting of Injuries, Diseases and Dangerous Occurrences Regulations (RIDDOR) 1995, accident book, company procedures; procedures to deal with near misses or dangerous occurrences

Basic first aid and Health and Prevention

Student will understand the basic procedure if they sustain cuts and burns from tools and soldering iron.

They will carry out risk assessment and teacher will demonstrate the use of all tools, equipment and machines. Students will also know the procedure to be taken in the event of accidents. All students will be thoroughly assessed

			and given a certificate before they are	
			allowed to use the machines.	
Autumn 2	Preparing for and carrying out an	Learning Aim:	Complying with essential health and safety	Feedback from class
/tataiiii 2	engineering activity.	Identify health and safety signs used in the	requirements.	discussion.
	engineering detivity.	workshop. Identify safe procedures and	requirements.	uiscussion.
	Objectives	, , ,	Corny out standard rick assessment on workshop	Crading of workshoots
	Objectives:	practice.	Carry out standard risk assessment on workshop	Grading of worksheets.
	Barrani adhalaran da aran ƙafal		before carrying out practical task.	
	Recognize the importance of safety	Use research and develop design criteria to		Questioning and
	when using workshop tools,	inform the design of innovative, functional,	Learners will become expert in using the design	answering.
	equipment, machines	appealing products that are fit for purpose,	process to design and manufacture their own	
	and components; and	aimed at particular individuals or groups.	products.	
	Recognize potential hazards in		They will be able to demonstrate the safe use of	Peer assessment using
	products, activities and	Key words	all tools needed to manufacture their products.	rubric.
	environments.	Tools- a device or implement, especially one	· ·	
		held in the hand, used to carry out a	Use different finishing techniques to make final	Grading of written
	Demonstrate an understanding of	particular function.	product successful and attracted to customers.	activities.
	risk assessment: – what is the	particular function.	product successful and attracted to customers.	activities.
	potential hazard? – who could be	Favrings and the processor, the profess	Understand and somewhile station ships	Campletian and smedies of
	harmed and how? – what can be	Equipment- the necessary items for a	Understand and respectful relationships,	Completion and grading of
		particular purpose.	including friendships.	project.
	done to prevent it from happening?			
		Design- a plan or drawing produced to show	Students will know that some types of	
	Identify the tools and equipment	the look and function or workings of a	behaviour within the workshop and within	
	required to produce a reliable,	building, garment, or other object before it	their relationships can be criminal intent	
	functioning technological product.	is made.	including violent behaviour. Students must be	
			informed that if they use any tools	
	Design and make an original	The Design Process is an approach for	inappropriately, they will be asked to leave the	
	product from a given scenario to	breaking down a large project into	workshop. Students will know that a tool used	
	solve an Engineering problem,	manageable chunks. This process can be	outside the workshop is classified as a weapon.	
	taking in consideration the design	used to define the steps needed to tackle a	They will respect each other and endeavor to	
	process.	· ·		
	p. 6 6 6 5 5 .	project, and remember to hold to all of the	build positive relationships.	
		ideas and sketches throughout the process.		
			Linking curriculum learning to careers	
			Students will know and understand the different	
			job roles in Engineering design and	
			manufacturing. These includes:	
			 Drafting Technician 	
			CAD Drafter	
			CAD Designer	
			Project Manager/Engineer	
			i roject manager/ Engineer	

			 Manufacturing Engineer Design Engineer Process Engineer Biomedical Engineering Mechanical Engineering 	
Spring 1	Introduction to Technical drawing.	Learning Aim: To help students to develop a general	Students will develop the art to precision as it is of the utmost importance in all technical	Feedback from class discussion
	Objectives	understanding of the basics of Technical	drawing. Drafts and product designs in all fields	
	At the suggestive completion of	Drawing and its relevance in society.	of engineering are expected to be scaled,	Grading of worksheet on
	At the successful completion of this unit students should:	2. To help students to develop a general	labeled and arranged exactly as the final product would be. The proper use of the	the types of drawing instruments and lines.
	ting and stadents should.	understanding of the basic concepts in	Technical drawing tools and equipment will	motiuments and inies.
	Have the basic knowledge of	Technical Drawing and how to apply them in	ensure students master such skills.	Grading of research on
	Technical Drawing. This knowledge	future lessons.		CAD and Geometry.
	includes the definition, instruments	2 Design and realize their design have a	Students will acquire the skill of Lettering as it is	NA publica a fatural a sata
	and types of lines commonly used in Technical Drawing.	3. Design and make their dream houses or city using the Technical Drawing skills	an important part of engineering drawing. It gives information regarding size, and	Marking of students bordered drawing paper.
	in recinical brawing.	developed in previous lessons.	instructions, in the form of notes and	bordered drawing paper.
	Have the basic knowledge of how	' '	dimension.	
	to border, set up a Title Block and	Generate, develop, model and		
	do the necessary lettering correctly	communicate their ideas through		Student feedback from
	on a drawing paper.	discussion, annotated sketches, cross-	Students will know the importance of the	quiz.
	Be able to bisect a line correctly	sectional and exploded diagrams,	different lines used in Technical drawing as lines	
	and perform other basic operations	prototypes, pattern pieces and computeraided design.	represent everything in these drawings. From the depth and intensity of the design that is	
	on lines such as: dividing a line into	anded design.	going to be represented, to the necessary and	Marking and grading of
	equal parts and ratios.		required details, the section that should be in	students' class work.
		Key words	focus, etc. Everything is represented through	
	Develop a comprehensive	Technical Drawing, tee square, set squares,	the intensity of lines in technical drawings and it	
	understanding of the term 'angles'.	protractor, French curves, flexi curves,	is very essential to draw them with all the care	
	This includes classifying and	continuous thick and thin lines, chain lines,	and with the required purpose.	
	constructing angles.	dimension lines, title block, bordering and	Students will acquire all the skills required to	
	Be able to accurately identify types	guidelines.	Students will acquire all the skills required to use Technical drawing instruments to measure	Assessment of students'
	of triangle based upon their	Technical drawing- Technical drawing, also	and layout drawings, or to improve the	input in the
	classifications.	known as drafting or draughting, is the act	consistency and speed of creation of standard	demonstrations.
		and discipline of composing plans that	drawing elements.	
	Be able to construct triangles based	visually communicate how something		Test 1: constructing lines
	on different information given, for	functions or has to be constructed.		and angles

example all three sides or 2 sides and one angle.

Lettering- Used to give dimensions and other important information needed to fully describe an item.

Guidelines- Lightly drawn lines used for lettering.

Object Lines- Thick dark lines that outlines an object

Hidden detail Lines- Short dash lines use to show non visible surfaces. Usually shows as medium thickness.

Construction line – very light and thin line use to construct layout work.

Dimension line – Thin and dark lines use to show the size (span) of an object with a numeric value.

Centre line – Long and short dash lines. Usually indicates centre of holes, circles and arcs. Line is thin and dark.

Drawing Sheet- Drawing sheet is a white paper on which an object is drawn which is available in various sizes.

Drawing Board- Drawing board is generally made of soft wood and it is in rectangular shape. It is used to support drawing sheet, so, the size of board is made according the size of the drawing sheet.

T-Square- T square is used to draw horizontal and vertical lines on drawing sheet.

Compass- Compass is used to draw an arc or circle with known dimensions on engineering drawing.

Set Squares- Set squares are used to draw lines with an angle between them. In most of the structures, 30, 45, 60 and 90-degree

Students will acquire the skills needed to construct different angles which will assist them with the trigonometry unit in Mathematics.

Linking curriculum learning to careers

Students will understand that Technical Drawing is a very important tool that is used by professionals to perform the following duties:

Drawing depictions of items, such as buildings, structures and technological machinery.
Creating blueprints for physical structures, including homes, apartments and office buildings.

Analyzing preexisting buildings and structures to determine their layout Reviewing construction and building plans Using technology, software or manual processes to sketch designs.

Designing interior decoration elements Reviewing preexisting construction and design plans and improving upon them if necessary.

They will also know the different professionals that rely on Technical Drawing skills to successfully complete their daily tasks. These are:

- Carpenters
- Drafters
- Surveyors
- Engineers
- Architects

Understand and respectful relationships, including friendships.

The legal rights and responsibilities regarding equality will be reinforced with reference to the protected characteristics as defined in the Equality Act 2010 that everyone is equal and

Test 2. Constructing triangles and quadrilaterals.

		lines are most common. So, set squares	unique. Students must consider that not all their	
		make the work easier for this type of drawings.	peers will be able to maneuver the drawing tools and should be mindful of that. They will be	
			encouraged to offer help to their peers and not	
		Protractor- Protractor is used to draw and measure the angles of lines in the drawing.	criticize their effort.	
		measure the angles of lines in the drawing.	Teachers will be patient and create opportunity	
		French Curves-French curves are made of	for students to be given one to one support.	
		plastic and they are in irregular shapes.		
		Perpendicular- at an angle of 90° to a given		
		line, plane, or surface or to the ground.		
		"Bisect" means to divide into two equal		
		parts. You can bisect lines, angles, and more.		
		Ratio- the quantitative relation between two amounts showing the number of times		
		one value contains or is contained within		
		the other.		
Spring 2	Technical drawing techniques.	Learning Aim:	The students will develop the skills of	Feedback from class
Spiring =	(Isometric and Orthographic)	To be able to sample a range of technical	constructing real life objects in 3D. These are	discussion.
	Objectives:	drawing techniques.	very important skills for engineers because they can easily and unambiguously read off the	Grading of worksheets.
		Design and make a tack hammer or bottle	various dimensions from the drawing and easily	
	After this lesson, students will be able to:	opener using skills and knowledge develop in previous lessons.	communicate between designer, client and manufacturer.	Questioning and answering.
	usic to.	· ·	manufacturer.	diiswering.
	Explain isometric drawing and its principles.	Build and apply a repertoire of knowledge, understanding and skills in order to design	Learners will be able to differentiate between	
	principles.	and make high quality prototypes and	2D and 3D drawings.	Peer assessment using
	Demonstrate an understanding of how to draw isometrically.	products for a wide range of users.	Learners will be able to explain the differences	rubric.
	now to draw isometrically.		between isometric drawing and other three	Grading of written
	Explain the differences between isometric drawing and other three	Key words	dimensional drawing.	activities. Tests
	dimensional drawing.	icy words		10303

Use isometric axis to draw given objects.

Explain orthographic projection.

Explain the principles of both first and third angle projections.

Distinguish between first and third angle projections.

Draw objects in first and third angle projections.

Learnt how to annotate and dimension a drawing.

Learnt how to produce sections and parts drawings.

Project:

Students will use their knowledge of technical drawing and project development to design and manufacture a model of their dream house or city.

Isometric drawing, method of graphic representation of three-dimensional objects, used by engineers, technical illustrators, and architects.

3D- three-dimensional.

Oblique drawing: a projective drawing of which the frontal lines are given in true proportions and relations and all others at suitable angles other than 90 degrees without regard to the rules of linear perspective.

Projections- A 3D projection or graphical projection maps points in three-dimensions onto a two-dimensional plane.

Orthographic projection- a method of projection in which an object is depicted using parallel lines to project its outline on to a plane.

Third angle projection. First angle projection.

Dimensioning is the process of specifying part's information by using of lines, number, symbols and notes.

Learners will be able to draw objects in first and third angle projections and annotate and dimension drawings.

Online and media

Students will understand the impact of viewing harmful content when conducting research.

Linking curriculum learning to careers.

Students will understand the different careers paths that effectively use different Technical drawing technique such as isometric and orthographic projections.

Students will know that these techniques are very useful for designers – particularly architects, industrial and interior designers and engineers, as they are ideal for visualizing rooms, products, and infrastructure. They will also understand that they are also a great way to quickly test out different design ideas.

They also illustrate the 3D nature of an object, without being drawn in 3D software, and measurements can be made to scale along the principal axes.

Students will be able to identify the sectors of engineering that intersect to design and develop a city or build a house. These includes:

- Civil engineers
- Mechanical engineers
- Plumbers
- Electrician
- Land surveyors
- Structural engineers
- Environmental engineers

		 Infrastructural Engineers 	
		 Geotechnical Engineers. 	
		 Materials engineer. 	
		Water resources Engineers	
		Construction Engineers.	
		•	
Summer 1	Learning Aim:	The learner completing these lessons will	Feedback from class
CAD –Computer Aided I	_	·	discussion.
	of accuracy, repeatability and efficiency	used commands and terminology related to	
The students will be ab		two-dimensional and three-Dimensional	Grading of worksheets.
The statement will be an	when producing engineering drawings.	drawing.	Grading or Workshields
Open and close a techni	ical program Use CAD to design a power supply to	didwing.	Questioning and
successfully.	precision using both orthographic project	tion The students will be able to use computer and	answering.
successiumy.	and isometric.	CAD software to model different engineering	answering.
Navigate software.		components.	
Travigute software.	To manufacture a power supply using a	components.	
Identify key areas of the		Learners will be able to use CAD to design and	Peer assessment using
interface.	variety of tools and equipment.	develop products to be used by consumers.	rubric.
interrude.	Understand and use electrical systems in		
Identify key vocabulary	·		Grading of written
related to the CAD prog			activities.
related to the ship prog	motors]	subassemblies and the constituent parts.	
Perform basic mouse an	-		Student feedback from
functions used with the	·	Learners will use CAD to Improve the quality of	quiz.
program.	Computer Aided Drawing (CAD): the use		
1 3	precision-drawing software programs to	will use large number of tools that will help in	
Create orthographic and			
drawings on different so		, ,	Marking and grading of
Modify commands: copy	·		students' class work.
paste, offset, fillet.	illustrating the layout and constituent		
	components to design a building, made b	Mental Health and Well being	
Print a drawing on the c	classroom projection on a horizontal plane.		
printer.		Engineering has always been characterized by its	
	Design: a plan or drawing that demonstra	ates rigor, emphasis on productivity, resiliency and	
	the form and function of a building,	hard work. Student will be encouraged to come	
Project:	garment, or other object prior to its being	forwards if workload becomes too much to	
Students will use the CA	AD software created.	handle. A safe space will be provided for	
to draw an isometric pr	ojection of	students to talk about their emotions accurately	
a tack hammer or a bot	tle opener. Fillet: a command in CAD software allowing	ing and sensitively using appropriate vocabulary.	
	you to create a rounded inside or outside		
Students will then use t		Curriculum will be tailored so all students are	
appropriate tools and e	equipment corner.	able to access it. Teachers will know how to	

to manufacture a tack hammer or bottle opener.	Grid: a pattern of dots or lines within the work area of the software that can be used to aid in drawing. Offset: a command that creates a copy of an entity (line, circle, etc.) that is a specified parallel distance away from the current object(s) selected. Title block: an area of a drawing sheet that contains information about the actual drawing, including project name, author, scale, drawing number. Trim: a command used to "trim" off excess length on an object or entity, to end exactly at the end or intersection of another entity.	recognize early signs of mental wellbeing concerns. Linking curriculum learning to careers. Students will understand that CAD is extremely important and is needed by most of the engineering fields to effectively do their jobs and provide the best possible services to clients. Some fields are highlighted below: Architects, Architectural designer, and drafter. Electrical engineer, design and drafter. Electronics engineer, design and drafter. Plumbing designer Interior designer. Industrial engineer. Manufacturing engineer. Mechanical engineer, design and drafter. Structural engineer, design and drafter. Architects, Architectural designer, and drafter. Plumbing designer Industrial engineer. Manufacturing engineer. Mechanical engineer, design and drafter What industries use AutoCAD? Aerospace & Aviation Consumer products Manufacturing Medical Device Industrial products Oil & Gas	
		Civil, Structural	
Types of criteria included in an engineering design specification.	Learning Aims: To be able use ACCESS FM to analyse an engineering product design specification and product.	Learners will be able to explain what ACCESS FM Learners will be able to use ACCESS FM to analyse a design brief and create design specifications.	Feedback from class discussions. Grading on worksheets.
How manufacturing considerations affect design.	To be able to explain the advantages and disadvantages of manufacturing techniques		Questioning and answering.

TA4 Evaluating Design ideas

Methods of evaluating design ideas.

Methods of evaluating a design outcome

To be able to qualitative analyse a product against a design brief.

Key words

ACCESS FM: a designer's tool used to make you think about products in a critical and analytical way.

Design Brief: a document for a design project developed by a person or team in consultation with the client/customer. They outline the deliverables and scope of the project including any products or works, timing and budget.

Design Specification: a detailed document that sets out exactly what a product or a process should present. For example, the design specification could include required dimensions, environmental factors, ergonomic factors, aesthetic factors, maintenance that will be needed, etc.

One Of Production: involves producing custom work, such as a one-off product for a specific customer or a small batch of work in quantities usually less than those of massmarket products.

Batch production: products are made as specified groups or amounts, within a time frame. A batch can go through a series of steps in a large manufacturing process to make the final desired product.

Mass Production: production of substantial amounts of standardized products in a constant flow, including and especially on assembly lines.

Learners will be able to explain the different production techniques, give advantages and disadvantages for each one understand when each one would be used.

Learners will be able to give accurate and detailed analysis of products currently on the market and products designed by them.

Peer assessment.

Grading of written activities.

Marking and grading of students' class work.

Marking and grading of end of topic assessment.

Continuous Production: production method used to manufacture, produce, or process materials without interruption. Design Analyse: a decision-making process in which analytical tools derived from basic sciences, mathematics, statistics, and engineering fundamentals are utilized for the purpose of developing a product model that is convertible into an actual product.